skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chisham, G"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The ground‐based, high‐frequency radars of the Super Dual Auroral Radar Network (SuperDARN) observe backscatter from ionospheric field‐aligned plasma irregularities and features on the Earth's surface out to ranges of several thousand kilometers via over‐the‐horizon propagation of transmitted radio waves. Interferometric techniques can be applied to the received signals at the primary and secondary antenna arrays to measure the vertical angle of arrival, or elevation angle, for more accurate geolocation of SuperDARN observations. However, the calibration of SuperDARN interferometer measurements remains challenging for several reasons, including a 2πphase ambiguity when solving for the time delay correction factor needed to account for differences in the electrical path lengths between signals received at the two antenna arrays. We present a new technique using multi‐frequency ionospheric and ground backscatter observations for the calibration of SuperDARN interferometer data, and demonstrate its application to both historical and recent data. 
    more » « less